Is the Ultra-high Energy Cosmic-ray Excess Observed by the Telescope Array Correlated with Icecube Neutrinos?
نویسندگان
چکیده
The Telescope Array (TA) has observed a statistically significant excess in cosmic-rays with energies above 57 EeV in a region of approximately 1150 square degrees centered on coordinates (R.A. = 146.7, Dec. = 43.2). We note that the location of this excess correlates with two of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2σ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible source classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source. Subject headings: (ISM:) cosmic rays — gamma rays: theory — gamma rays: observations
منابع مشابه
IceCube: Performance, Status, and Future
High-energy neutrinos are uniquely suited to study a large variety of physics as they traverse the universe almost untouched, in contrast to conventional astronomical messengers like photons or cosmic rays which are limited by interactions with radiation and matter at high energies or deflected by ambient magnetic fields. Located at the South Pole, IceCube combined with its predecessor AMANDA c...
متن کاملar X iv : a st ro - p h / 06 11 72 6 v 2 28 N ov 2 00 6 IceCube : Performance , Status , and Future
High-energy neutrinos are uniquely suited to study a large variety of physics as they traverse the universe almost untouched, in contrast to conventional astronomical messengers like photons or cosmic rays which are limited by interactions with radiation and matter at high energies or deflected by ambient magnetic fields. Located at the South Pole, IceCube combined with its predecessor AMANDA c...
متن کاملNeutrino Astronomy with Icecube
IceCube is a kilometer-scale high energy neutrino telescope under construction at the South Pole, a second-generation instrument expanding the capabilities of the AMANDA telescope. The scientific portfolio of IceCube includes the detection of neutrinos from astrophysical objects such as the sources of the cosmic rays, the search for dark matter, and fundamental physics using a very large data s...
متن کاملNeutrino Astronomy with the Icecube Observatory and Implications for Astroparticle Physics
The IceCube Observatory is a km neutrino telescope currently under construction at the geographic South Pole. It will comprise 4800 optical sensors deployed on 80 vertical strings between 1450 and 2450 meters under the ice surface. Currently IceCube is operational and recording data with 40 strings (i.e. 2400 optical sensors). The IceCube Observatory will collect an unprecedented number of high...
متن کاملOrigin and evolution of cosmic accelerators - the unique discovery potential of an UHE neutrino telescope Astronomy
One of the most tantalizing questions in astronomy and astrophysics, namely the origin and the evolution of the cosmic accelerators that produce the highest energy cosmic rays (UHECR), may be best addressed through the observation of ultra high energy (UHE) cosmogenic neutrinos. Neutrinos travel from their source undeflected by magnetic fields and unimpeded by interactions with the cosmic micro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014